Efficient and Private Federated Learning using TEE

Fan Mo, Hamed Haddadi
Systems and Algorithms Laboratory, Imperial College London

Background
Federated learning enables collaborative training on edge devices while keeping sensitive personal data local to the participants [2]. However, federated learning techniques can potentially leak information via the gradients present in shared models [3]. Such privacy leakage can have serious security and privacy implications.

Leveraging the Trusted Execution Environment (TEE) implementation in ARM TrustZone (Figure 1), we focus on conducting private federated learning for edge computing without compromising accuracy and efficiency.

Proposed Framework
Partitioned Model Training
We present our framework that separates layers [5] and trains parts of the model in the TrustZone to prevent privacy leakage (Figure 2).

Enhanced privacy-preserving techniques
- Data-oblivious trusted models [4]
- To defend side-channel attacks that listen at access patterns (e.g. following pseudo-code in ReLU activation) at layers in a DNN:

```plaintext
if(input < 0) then:
input = 0;
```
- Differential privacy-SGD [1]
 To obfuscate parameters and to guarantee privacy in untrusted parts.

Federated Learning with TEE
As an example, Figure 3 shows the flow of model parameters during the training phase of Federated Learning.

```
Control computer
remote collaboration

One among many edge devices

Arm Trusted Firmware

Hardware
```

Experiment
- MNIST and CIFAR-10 as the data sets
- Open Portable TEE, based on TrustZone, as the implementation
- Darknet, written in plain C language, as the DNN framework
- A Raspberry Pi 3 Model B as the setup
- Le-net for MNIST and a Small-net model for CIFAR-10 (Figure 4)

```
Le-net for MNIST

Small-net for CIFAR-10
```

Results
Overall, partitioning models does not significantly influence CPU usage (Figure 5). One exception is putting the maximum number of layers in TrustZone.
Partitioning models also slightly lead to a decrease of the CPU usage in the user mode, though consequently, it increases the CPU usage in the kernel mode.

```
Kernel mode
User mode

Total CPU time
```

```
Memory usage (MB)
Partition layers in TEE
```

```
Power consumption (W)
Partition layers in TEE
```

```
Execution Time (s)
Partition layers in TEE
```

```
Download/Upload
```

Figure 6: Memory usage and power consumption for partitioning models of MNIST (top two figures) and CIFAR-10 (bottom two figures)

References

Acknowledgements
This work is partially supported by the EPSRC Databox grant (Ref. EP/N028060/1) and the EPSRC DADA grant (ref: EP/R03115X/1)

Contact Information
- cm118@imperial.ac.uk
- https://www.databoxproject.uk/

Figure 1: Simplified diagrammatic drawing of ARM TrustZone architecture

Figure 3: The transfer of model parameters during the partitioned federated learning

Figure 5: Execution time for partitioning models of MNIST (top two figures) and CIFAR-10 (bottom two figures)